Skip to content

Mit einem Mystery spielerisch zum Bau der Daniell-Zelle

Beim problemorientierten Chemieunterricht denken die meisten Lehrkräfte sicher an Erarbeitungen anhand von Experimenten oder experimentellen Daten. Doch es geht auch spielerischer, nämlich durch ein Mystery. Wie genau die Mystery-Methode auf spannende, rätselhafte und aktivierende Weise angewendet werden kann, zeigt dieser Beitrag anhand der Erarbeitung der Daniell-Zelle.

Ein Beitrag von Jana Buchholz und Niklas Schneeweiß

Mysterys sind eine mittlerweile angesehene Lernmethode. Sie beruhen auf einer Rätselgrundstruktur. Es müssen dabei Informationen zusammengetragen und miteinander in Beziehung gesetzt werden, um ein Rätsel zu lösen. Bei einem Mystery erscheinen die Hinweise zunächst ungeordnet. Lernende müssen somit die Hinweise richtig strukturieren, um die Problemfrage zu beantworten. Die Hinweise werden in der Regel in Form von 20 bis 30 Hinweiskarten gegeben, die auch irrelevante Informationen enthalten können. Dabei müssen Mysterys keinen Verlust an Fachlichkeit bedeuten, und die Rätselkarten können auch ohne inhaltliche Vorwegnahmen für die Lernenden gestaltet werden.

Die Mystery-Methode im Unterricht

Um die Daniell-Zelle im Unterricht zu erarbeiten, wurde das klassische Verfahren ein wenig adaptiert. Einerseits wurde die Anzahl der Hinweise reduziert. Zudem müssen die Informationen der Hinweiskarten von den Schüler*innen unter Einbezug von Vorwissen (Verdrängungsreihe der Metalle und Reaktionen von Metallen in Metallsalzlösungen) gedeutet werden, bevor sie miteinander in Beziehung gebracht werden können. Zentrale Erkenntnisse der Stunde werden nicht einfach als Informationen auf den Hinweiskarten verraten, sondern müssen von den Schüler*innen erarbeitet werden. Die Stunde reiht sich in die Elektrochemie der gymnasialen Oberstufe ein. Ziel der Unterrichtsstunde ist es, dass die Schüler*innen den Aufbau der Daniell-Zelle anhand des Mysterys eigenständig entwickeln. Dabei sollen sie darauf eingehen, dass die Daniell-Zelle aus zwei getrennten Kammern besteht, dass je eine Kupfer- und Zinkelektrode in einer Metallsulfatlösung vorliegt und dass eine poröse, ionendurchlässige Mittelwand vorhanden sein muss. Relevante Vorstellungen der Schüler*innen zur Leitfähigkeit von Salzlösungen (z. B. dass Elektronen mit Ionen transportiert werden) können hier noch nicht aufgegriffen werden. Entsprechende Aussagen sollten aber in einer Folgestunde diskutiert werden.

Verschiedene Hinweiskarten im Stil von antiken Laborjournaleinträgen führen die Schüler*innen durch das Mystery

Schritt 1: Der Einstieg

Die Problematisierung erfolgt durch ein rätselhaftes Zitat: „Durch Johns besondere Bauteil-Bauweise bekamen die Betreiber beständige Telegrafen.“ Der rätselhafte Einstieg soll motivieren. Es wurde ein historischer Kontext (Telegrafen) gewählt, da dort Daniell-Zellen eine bedeutende Rolle spielten. Die Lernenden sollen ihre spontanen Ideen zu dieser Aussage nennen. Diese werden an der Tafel festgehalten, jedoch nicht weiter kommentiert. Mögliche Äußerungen sind: Batterien, Stromleitungen, rostfreier Stahl.

Schritt 2: Die Erarbeitung

In der Erarbeitungsphase kommen die Hinweiskarten zum Einsatz. Sie wurden im Stil von Laborjournaleinträgen des mysteriösen „John“ gestaltet. Ohne es zu wissen, befinden sich die Lernenden somit auf den Spuren von John Frederic Daniell, dem Erfinder der Daniell-Zelle. Die gestalteten Hinweiskarten sollen lediglich zum Denken anregen, zentrale Erkenntnisschritte werden nicht auf den Karten vorweggenommen. Somit ist ein hohes Maß an Eigenaktivität notwendig, um das Lernziel zu erreichen. Zur Differenzierung dienen einerseits Kartensets, die in ihrem Offenheitsgrad variieren, und andererseits zusätzliche Hinweise, die nach Bedarf verteilt werden. Erfahrungsgemäß sind Gruppen von drei bis vier Schüler*innen eine zielführende Sozialform, da sie sich so über die Rätsel austauschen können. Während der Erarbeitung hält sich die Lehrkraft im Hintergrund. Bei Schwierigkeiten wird auf relevante Hinweiskarten verwiesen. Für einige Schlüsselschwierigkeiten stehen ergänzende Hinweiskarten bereit (s. Download).

Download

Umfangreiches Zusatzmaterial
Unerfahrenen Rätsler*innen kann strukturelle Unterstützung in Form eines Arbeitsblatts angeboten werden. Indem die Schüler*innen die zentrale Erkenntnis jedes Hinweises festhalten, wird ihnen die spätere Verknüpfung erleichtert. Diese Unterstützung kann auch als optionales Angebot eingeführt oder zur Differenzierung genutzt werden. Das Arbeitsblatt, einen Vorschlag zur Unterrichtsgestaltung sowie eine Übersicht über die Hinweiskarten und die antizipierten Erkenntnisse finden Sie hier:

Schritt 3: Die Sicherung

In einer optionalen Plateauphase können die einzelnen Erkenntnisse vorgestellt und erläutert werden. Dies ist insbesondere dann notwendig, wenn während der Erarbeitung viele alternative Deutungen festgestellt wurden. Zur Visualisierung können die Tabellen und Hinweiskarten beispielsweise unter einer Dokumentenkamera präsentiert werden. Im Anschluss daran stellen die Schüler*innen ihre Beschreibungen der Bauweise vor. Dabei sollte festgehalten werden:

  • Kupfer- und Zinkelektrode in Metallsulfatlösungen (oder andere hinreichend unterschiedliche Metalle in ihren Metallsulfaten)
  • Trennung der Reaktionen (Oxidation und Reduktion)
  • Durchlässigkeit der Trennwand für Ionen
  • Verbindung durch Ionen

Schließlich klärt die Lehrkraft auf, dass das gesuchte Bauteil die sogenannte Daniell-Zelle, benannt nach John Frederic Daniell, ist. Die Daniell-Zelle wird als galvanische Zelle und Vorläufer moderner Spannungsquellen eingeführt. Dabei kann der Fachbegriff der Salzbrücke eingebracht werden. Um die Stunde abzuschließen, sollen die Schüler*innen die Erkenntnisse zusammenfassen und eine Lösung für das Rätsel nennen (z. B. Telegrafen brauchen Strom, Johns Bauteil liefert Strom, Besonderheit ist: Trennung der Reaktionen, Verbindung durch Salzbrücke).

Download

Literatur
Interessante Literatur zur Lehrmethode Mystery finden Sie hier:

Die Schüler*innen sind ratlos?

Falls schon während der Erarbeitung festgestellt wird, dass die Schüler*innen keine Ideen zur Bauweise haben, können auch Tipps formuliert werden, etwa solche, die jemand wie John beachten sollte, wenn er eine Stromquelle konstruieren möchte. Anstelle des Lehrvortrags zur Daniell-Zelle könnten die Schüler*innen dann als Hausaufgabe überprüfen, inwiefern die Daniell-Zelle diese Tipps umsetzt.

Jana Buchholz

war wissenschaftliche Mitarbeiterin an der Georg-August-Universität Göttingen und ist Lehrkraft für Biologie und Chemie am Gymnasium Ernestinum in Rinteln.

Niklas Schneeweiß

war wissenschaftlicher Mitarbeiter an der Leibniz Universität Hannover und ist Lehrkraft für Biologie und Chemie an der IGS List in Hannover.

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Drei Kinder stehen mit Tablets in den Händen vor einem virtuellen Eisbären
14. Mai, 2025
Die Anwendung „Reise in die Arktis“ von Heartucate bringt Schüler:innen ab der Sekundarstufe I die faszinierende Welt der Klimaforschung näher. Mit Augmented Reality tauchen sie in die raue, eisige Landschaft der Arktis ein, unterstützen Professor Aureus bei wissenschaftlichen Aufgaben und erstellen mit den von ihnen ermittelten Daten gemeinsam einen Klimabericht. Durch praxisnahe Aufgaben und interaktives Lernen fördert das Projekt das Bewusstsein für den Klimawandel und gibt Anregungen, wie jeder einen Beitrag zum Schutz unserer Erde leisten kann.
Schüler:innen bauen gemeinsam mit LEGO SPIKE Prime.
Gesponserte Inhalte
7. Mai, 2025
Stellen Sie sich vor, ein Nashorn rollt durch Ihr Klassenzimmer – nicht aus Fleisch und Blut, sondern aus LEGO®-Steinen gebaut und programmiert von Ihren Schüler:innen. Sie blicken in konzentrierte, faszinierte Gesichter und sehen, wie sich Knoten lösen, die sich im rein theoretischen Unterricht oft nur enger ziehen. Was zunächst vielleicht lediglich spielerisch-niedlich wirkt, wird im MINT-Unterricht zum Aha-Erlebnis, denn wenn Technik begreifbar wird, beginnt echtes Verstehen. Und plötzlich macht Lernen für die Schüler:innen wieder Sinn.
Biene hängt an einer gelben Blüte
6. Mai, 2025
„Alles hängt mit allem zusammen“, erkannte bereits Alexander von Humboldt. In Zeiten der Klimakrise wird deutlich, wie lebenswichtig natürliche Partnerschaften sind, denn: keine Blütenpflanzen ohne Bestäuber, keine Hülsenfrüchte ohne Bakterien. Und damit weniger Stabilität für unsere Ökosysteme und Ernährung. Könnte Gentechnik die Lösung sein? Und falls ja, welches Ausmaß an gentechnischen Eingriffen können wir komplexen Lebensgemeinschaften im Ökosystem zumuten, ohne unsere Lebensgrundlagen zu gefährden?
Junge Frau steht mit Schutzbrille hinter einem elektronischen Robotergreifarm und beobachtet, was passiert
15. April, 2025
Erinnern Sie sich? In einem früheren Onlinebeitrag haben wir auf dem MINT-Zirkel-Blog einen Roboterarm vorgestellt, der ganz einfach aus Pappe, Spritzen, Schläuchen und Büroklammern gebaut werden kann. Der elektronische Robotergreifarm 2.0 stellt eine Weiterentwicklung des damaligen Robotergreifarms vor.
Junge Frau schleift mit einer Maschine einen Holzbalken
9. April, 2025
Nicht nur in den MINT-Berufen, auch in Handwerksberufen fehlt qualifiziertes Personal. In vielen Berufen werden unterschiedliche mathematische Kenntnisse, Fähigkeiten und Fertigkeiten genutzt. Am Beispiel des Ausbildungsberufs Zimmerer/Zimmerin wird in diesem Beitrag ausgehend von einer Fachwerkansicht gezeigt, wie sich Lernende typische Fachbegriffe aneignen und daran anschließend typische Rechnungen aus dem Berufsfeld Zimmerer/Zimmerin ausführen.
Schülerin fotografdiert einen Leoparden, was zeigen soll, wie lebensecht die App ist
1. April, 2025
Bereits seit Jahren wird davor gewarnt, dass der Verlust an Biodiversität alarmierende Ausmaße annimmt. Das Bewusstsein für die Wichtigkeit von biologischer Vielfalt und Umweltschutz zu schärfen, ist daher von entscheidender Bedeutung. Wenn wir das Thema in die Klassenzimmer bringen, können wir bereits der nachkommenden Generation zeigen, wie spannend und wertvoll unsere natürliche Welt ist – und dass es in unser aller Händen liegt, sie zu schützen.
Schülerinnen und Schüler machen ein chemisches Experiment unter der Aufsicht einer Lehrerin
25. März, 2025
Wer kennt das nicht: Das Schuljahr neigt sich dem Ende entgegen, Notenkonferenzen werden abgehalten, vielleicht steht eine Projektwoche an, Ausflugstage zum Abschluss werden geplant. Die Schülerschaft ist gedanklich schon in den Sommerferien, normaler Unterricht findet eigentlich kaum noch statt. Um in dieser Phase des auslaufenden Schuljahres doch noch etwas Schüleraktivierung in die Klassen zu bekommen und auch ein wenig die Lerninhalte des vergangenen Schuljahres zu wiederholen, hatte ich mir für das Ende des Schuljahres 2023/24 etwas ausgedacht: ein EduQuest zum Schuljahresabschluss.
Sammlung von Plastikgegenständen wie Zahnbürste und Spülschwamm
20. Februar, 2025
Überlegen Sie einmal, welche Gegenstände aus Kunststoff Sie heute schon benutzt haben. Ob Zahnbürste, Autoschlüssel, Brotbüchse – Kunststoffe sind in unserem Alltag omnipräsent, und das nicht grundlos. Wir nutzen sie jeden Tag. Doch was macht den Alltagsbegleiter Kunststoff eigentlich so besonders? Und gibt es vielleicht doch nachhaltigere Alternativen, die genauso viele Vorteile bieten?
Kinderhände bauen und spielen mit LEGO Education SPIKE-Elementen auf einem Tisch. Sie halten eine Karte und konstruieren kreative Modelle aus bunten LEGO-Steinen.
Gesponserte Inhalte
7. Februar, 2025
Was ist der Unterschied zwischen einer Rakete und naturwissenschaftlichen Schulfächern? Nun, während Raketen unsere Begeisterung für die Physik des Weltalls und Raumfahrttechnik entfachen, fehlt in vielen Klassenzimmern genau diese Faszination für Naturwissenschaften. Etwa die Hälfte der Lehrkräfte gibt an, dass ihre Schüler:innen kein Interesse an Naturwissenschaften haben. Das ergab eine Befragung von mehr als 6000 Lehrkräften weltweit, davon 500 in Deutschland.
Das Bild zeigt einen geöffneten Laptop, auf dem ein KI-Chatfenster geöffnet ist.
4. Februar, 2025
Im digitalen Zeitalter hat sich die Art und Weise, wie wir lehren und lernen, drastisch verändert. Künstliche Intelligenz (KI) nimmt einen immer größeren Platz in unserem Alltag ein und bietet neue Möglichkeiten, Wissen zu vermitteln und zu erwerben. Ein bemerkenswertes Beispiel dafür ist ChatGPT, ein leistungsfähiges Sprachmodell (Large Language Model, LLM), das von OpenAI entwickelt wurde und über künstliche neuronale Netze funktioniert, die darauf ausgelegt sind, menschenähnlichen Text zu verstehen und zu generieren. Doch welche Rolle kann und sollte ChatGPT im Mathematikunterricht spielen?
Mädchen schreibt eine mathematische Gleichung an die Tafel
29. Januar, 2025
Dass unsere Bildung dringend einer geschlechtergerechten und diversitätssensiblen MINT-Bildung bedarf, dürfte inzwischen nur noch die wenigsten überraschen. Doch wie kann diese konkret aussehen und wie kann ich, wenn ich als Lehrkraft den Anspruch habe, meinen Unterricht diskriminierungssensibel zu gestalten, dies in meiner täglichen Arbeit umsetzen? Mit Fokus auf das Unterrichtsfach Mathematik sollen in diesem Beitrag einige Überlegungen vorgestellt werden.
Lehrer erklärt zwei Schülern im Klassenzimmer ein technisches Modell aus einem fischertechnik-Bausatz, während andere Schüler interessiert zuschauen.
Gesponserte Inhalte
3. Januar, 2025
Unsere Welt wird digitaler, und KI prägt unseren Alltag. Mit den fischertechnik STEM Coding Max Bausätzen lernen Schüler:innen, wie Computer „denken“. Entdecken Sie die Schlüsselkompetenz Computational Thinking – praxisnah, kreativ und innovativ. Kostenlose Bausätze für Schulen erhältlich!