Skip to content

Die Entdeckung der Gravitationswellen

Am 14. September 2015 erschien auf einem Computermonitor in Hannover eine automatisch verschickte E-Mail. Sie stammte vom Detektorsystem LIGO in den USA und enthielt eine wissenschaftliche Sensation: Ausgeklügelte Algorithmen hatten das erste jemals direkt gemessene Signal einer Gravitationswelle erfasst! Das Ereignis sollte unter der Bezeichnung GW150914 in die Geschichte der Physik eingehen und schließlich 2017 mit dem Nobelpreis ausgezeichnet werden.

Nachdem anfängliche Zweifel an der Echtheit des Signals schnell ausgeräumt werden konnten, war klar, dass diese Entdeckung nobelpreiswürdig war. Der Nachweis ist eine späte Genugtuung für Albert Einstein. Dieser hatte bereits vor über 100 Jahren auf rein theoretischer Basis nachgewiesen, dass Gravitationswellen immer dann entstehen, wenn Massen beschleunigt werden.

Die geheimnisvollen Wellen sind letztendlich Schwingungen der Raumzeit, die sich mit Lichtgeschwindigkeit im Universum ausbreiten. Durchläuft eine Gravitationswelle einen bestimmten Raumbereich, dann ändert sich dort der Abstand zwischen zwei Punkten im Raum. Diese Abstandsänderungen sind jedoch extrem gering. Um überhaupt messbare Signale zu erzeugen, sind Ereignisse von kosmischen Dimensionen erforderlich. Ein klassisches Beispiel für eine starke Gravitationswellenquelle sind zwei zusammenstürzende Schwarze Löcher.

Beim GW150914-Signal waren zwei Schwarze Löcher beteiligt, die in einer Entfernung von 1,3 Milliarden Lichtjahren miteinander verschmolzen. Aus den beiden Objekten mit 36 beziehungsweise 29 Sonnenmassen entstand ein neues Schwarzes Loch mit 63-facher Sonnenmasse. Daraus ergibt sich, dass innerhalb von Sekundenbruchteilen drei Sonnenmassen in reine Energie umgewandelt wurden.

Rieseninterferometer bringen den Durchbruch

Lange wurde bezweifelt, dass Gravitationswellen nachweisbar wären. Selbst Albert Einstein war der Meinung, dass die Raumzeitverwerfungen so minimal seien, dass man sie niemals direkt messen könne. Gigantische Interferometer schafften nun jedoch das scheinbar Unmögliche. In diesen Detektoren wird ein hochintensiver Laserstrahl aufgespalten, der jeweils zwei vier Kilometer lange Vakuumröhren durch­läuft. Diese bilden einen Winkel von 90 Grad und somit eine hochempfindliche Gravitationswellenantenne. Am Ende der Interferometerarme reflektieren spezielle, extrem verlustarme Superspiegel das Licht zurück auf einen Photodetektor. Die Anlage wird so justiert, dass sich die beiden Laserstrahlen im Ruhezustand am Detektionspunkt exakt auslöschen. Man spricht hier auch von „destruktiver Inter­ferenz“. Läuft jedoch eine Gravitations­welle durch das Interferometer, verändert sich die Länge der Strecken, die die beiden Teilstrahlen durchlaufen. Letztendlich sind es unvorstellbar geringe Wegunterschiede, die gemessen werden. Die auftretenden Längenänderungen sind so extrem klein, dass die Messtechnik in jeder Hinsicht bis an die äußerste Grenze des Machbaren getrieben werden muss.

Ein einfaches Beispiel: Die Strecke zwischen Sonne und Erde beträgt etwa 150 Millionen Kilometer. Beim Durchlaufen der Gravitationswelle vom 14. September 2015 änderte sich diese Distanz nicht einmal um den Durchmesser eines Wasserstoffatoms (Größenordnung 10-12 m). Die Längenänderung liegt also im Bereich von 1:10-21. In Worten: eins zu einer Trilliarde!

Mit diesem Ziel vor Augen wurde der Bau von Laser-Interferometern begonnen. Unter dem Namen Laser Interferometer Gravitational-Wave Observatory, oder kurz LIGO, entstand in Hanford im US-Bundesstaat Washington, und in Livingston (Louisiana) jeweils ein Gravitationswellen­observatorium.

 

LIGO_measurement_of_gravitational_waves-cmyk
Quelle: Von B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) | CC BY 3.0

Der lange Weg zum Erfolg

Die Entdeckung der Gravitationswellen ist eine lange, hochinteressante und abwechslungsreiche Geschichte. Über mehr als 50 Jahre war der Weg zum Gravitationswellennachweis vielschichtig, steinig und von Misserfolgen übersät. Von einfachen Irrtümern, Messfehlern, der fehlerhaften Interpretation von Daten bis hin zu Nobelpreisträumen, die innerhalb von Tagen und Wochen zu Staub zerfielen, wurde alles geboten.

Im September 2015 wurde jedoch das in der Abbildung dargestellte Signal aufgespürt. In der linken Spalte der Abbildung sind die Ergebnisse des Detektors in Hanford, in der rechten die aus Livingston zu sehen. In der oberen linken Graphik zeigt eine rote Kurve einen Signalausschnitt aus Hanford. Hier ist die relative Längen­änderung der Messstrecke in ihrem Zeit­ver­lauf dargestellt. Die zugehörige Zeit­ach­se ist ganz unten im Bild angegeben. Zunächst erkennt man im Signal nur das Hintergrundrauschen des Detektors. Dann aber wird ein zunehmend deutlicher Wellenzug sichtbar. Die Signalamplitude nimmt zu, die Frequenz wird dabei immer höher. Schließlich bricht das Signal relativ schnell ab.

Die Messwerte aus Livingston sind rechts daneben in blau dargestellt. Zum Vergleich wurde hier auch noch das angepasste Hanford-Signal in hellerem orange unterlegt. Unter den Originalsignalen folgen numerische Simulationen. Diese wurden auf Basis der Allgemeinen Re­la­ti­vi­täts­theo­rie erstellt. Die in den ursprünglichen Farben der Messsignale dargestellten Resultate der relativistischen Simulationen sind dabei zusätzlich mit grauen Signal­rekon­struk­tionen hinterlegt. Dabei wurde mit jeweils unterschiedlichen mathematischen Verfahren versucht, die Simulationsergebnisse optimal an den gemessenen Wellenzug anzupassen. Darunter folgen die Signalformen, die sich ergeben, wenn man die simulierten Wellenformen von den Ori­ginalsignalen subtrahiert. So wird demonstriert, dass in diesem Falle nur noch das statistische Hintergrundrauschen erkennbar ist.

Im untersten Teil des Bildes ist die Signalfrequenz gegen den Zeitverlauf aufgetragen. Die Farbe zeigt die zugehörige Amplitude des Signals an, von dunklem Blau für 0 Prozent bis zu hellem Gelb für 100 Prozent. So ist das Ereignis am deutlichsten vom Rauschuntergrund zu unterscheiden. Zudem erkennt man so, dass das Maximum des Signals bei einer Frequenz von 130 Hz erreicht wurde.

Das Signal war so deutlich ausgeprägt, dass man es mit bloßem Auge im Daten­strom des Interferometers hätte erkennen können. Ein geschultes Auge könnte bereits im unverarbeiteten Messsignal sehen, dass der Fingerabdruck von zwei verschmelzenden Schwarzen Löchern eingefangen wurde. Am 3. Oktober 2017 wurde bekannt gegeben, dass für diese Entdeckung der Nobelpreis für Physik verliehen wird.

Ein neues Fenster zum Kosmos: Gravitationswellenastronomie

Bis zum Jahre 2015 standen der Wissenschaft nur elektromagnetische Wellen zur Erforschung des Universums zur Verfügung. Mit den Gravitationswellen-­Detektoren hat sich ein neues Fenster zum Kosmos aufgetan. Physiker hofften auf neue Erkenntnisse, die dank der „Gravitationswellen-Astronomie“ möglich werden.

Und der Erfolg kam schneller als erwartet. In kurzer Zeit nach dem ersten Nachweis ist es gelungen, eine Quelle der Raumzeitwellen sowohl im sichtbaren Licht als auch in anderen Bereichen des elektromagnetischen Spektrums zu beobachten. Am 17. August 2017 re­gis­trier­ten die Detektoren der beiden LIGO-­Observatorien in den USA und das VIRGO-­Labor in Italien rund 100 Sekunden lang winzige Verwerfungen in der Raumzeit. Mit diesem Ereignis namens GW170817 wurde eine sogenannte „Kilonova“ entdeckt. Diese ist ca. tausendmal heller als eine gewöhnliche Nova. Sie entsteht, wenn zwei Neutronensterne verschmelzen. Nahezu gleichzeitig konnte auch einer der bislang höchst geheimnisvollen Gamma­strahlen­blitze beobachtet werden. Ein weltweites Netzwerk von Astronomen richtete daraufhin seine Teleskope auf die Ursprungshimmelsregion.

Die klassischen Observatorien konnten dadurch eine Reihe neuer Erkenntnisse über Neutronensterne gewinnen. Die Signale enthalten Hinweise da­rauf, dass Gold, Platin und andere schwere chemische Elemente in der Umgebung der Kollision entstanden sind. Ein klarer Hinweis, dass schwere Elemente beim Zusammenstoß oder bei der Verschmelzung von Neutronensternen entstehen. Damit konnte sich die neu geborene Gravitationswellenastronomie bereits jetzt als wertvolles Hilfsmittel für zukünftige Forschungsvorhaben etablieren.

Welche weiteren bahnbrechenden Entdeckungen die Gravitationswellenastronomie noch liefern wird, kann man momentan noch kaum abschätzen. Vielleicht wird man eines Tages sogar das Echo des Urknalls mittels eines Gravitationswellendetektors auffangen können …

Dr. Günter Spanner

Literatur:
Günter Spanner (2016). Das Geheimnis der Gravitationswellen. KOSMOS

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Mond am schwarzen Nachthimmel
27. Mai, 2025
Unser himmlischer Begleiter stabilisiert nicht nur die Erdachse, was Klimakapriolen verhindert, sondern war uns früher wesentlich näher. Ohne ihn wäre die Evolution ganz anders verlaufen …
Gruppe lachender Frauen halten brennende Wunderkerzen in den Händen
21. Mai, 2025
Am Mittwochmorgen nach dem Unterricht sagt die Lehrerin: „Die nächste Lateinstunde ist in acht Tagen.“ In acht Tagen? Meint sie also am Donnerstag nächster Woche? Nein, wahr-scheinlich nicht. Vermutlich meint sie damit den nächsten Mittwoch, auch wenn bis dahin nur sieben Tage verstreichen. Die Redewendung „in acht Tagen“ für „in einer Woche“ ist uralt und geht auf die Zählweise der Römer zurück.
Weite Moorlandschaft
22. April, 2025
Frans Martens, ein Bursche aus dem Nachbardorf des Moorprofessors Hans Joosten in den Niederlanden, radelte eines schönen Tages ein bisschen durch die Gegend, da fiel er plötzlich ohnmächtig mit seinem Fahrrad um. Der Pups eines nebenliegenden Moores hatte ihn umgehauen.
Illustration von Neutronensternen
18. März, 2025
Mit Gravitationswellen lassen sich die verborgenen Seiten des Alls belauschen. Die meisten bislang entdeckten Quellen sind kollidierende Schwarze Löcher.
Erschöpfte Frau greift sich an die Stirn
3. März, 2025
Lampenfieber vor einer Präsentation, Prüfungsangst oder einfach ein stressiger Schultag – Stress gehört für viele Schüler:innen leider zum Schulalltag, ebenso wie für Lehrkräfte. Doch zu viel davon kann die Konzentration und das Wohlbefinden beeinträchtigen. Genau hier kommt der Vagusnerv ins Spiel: Wie kein anderer Nerv hat der längste Nerv unseres Körpers, der Vagusnerv, und das damit verbundene parasympathische Nervensystem, in den letzten Jahren höchstes Interesse bei gesundheitsorientierten Menschen gewonnen. Kein Wunder, ist er doch DAS zentrale Kommunikationsorgan zwischen dem Gehirn und den Körperorganen. Das Beste: Er lässt sich aktivieren.
Zeppelin in der Abendsonne
25. Februar, 2025
Von Radaröfen haben Sie nie gehört? Auch Hydrobergbau ist Ihnen kein Begriff, ebenso wenig wie die Kohlenstaub-Lokomotive? Selbst beim Itera-Plastikfahrrad oder beim Elektropflug glimmt kein Erinnerungsfunke auf? Kein Grund zur Sorge: Fast niemand erinnert sich mehr an diese Dinge, denn es sind „gescheiterte Innovationen“, deren Existenz über kurz oder lang von der Welt vergessen wurde. In Erinnerung sind bestenfalls die angesichts verlorener Subventionsmillionen spektakuläreren Fälle, etwa die zumindest vorerst gefloppte Magnetschwebebahn Transrapid oder der 2002 wohl endgültig gescheiterte Frachtzeppelin Cargolifter, in dessen Halle sich heute immerhin vom Urlaub in den Tropen träumen lässt.
Forscherin mit Handschuhen bearbeitet eine grüne Salatpflanze im Labor mit einer Pinzette
20. Februar, 2025
Die Klimakrise verschärft sich rasant und stellt schon jetzt weltweit Menschen vor existenzielle Probleme, auch im Hinblick auf Landwirtschaft und Ernährung. Die Landwirtschaft leidet unter den Folgen der Klimakrise und muss sich an die neuen Extremwettersituationen anpassen. Zudem erhöhen das massive Artensterben und andere ökologische Folgen menschlichen Handelns zunehmend den Druck, bisherige ökonomische und soziale Praktiken zu hinterfragen und zu verändern. Ein aktuell kontrovers diskutierter Ansatz ist die Neue Gentechnik (NGT).
viele Euro-Münzen auf einem Haufen
20. Februar, 2025
Der reichste Mann der Welt ist der Entenhausener Erpel Dagobert Duck. Auch der zweit-reichste Mann ist ein Erpel. Er heißt Mac Moneysac und lebt in Simililand in Südafrika. Erst auf Platz drei kommt mit dem Amerikaner Elon Musk ein Mensch. Doch wie reich Dagobert Duck ist, darüber gibt es unterschiedliche, zum Teil stark widersprüchliche Angaben, und da er, genau wie Donald Trump, seine Steuererklärungen nicht veröffentlicht, wird man die genaue Größe seines Vermögens wohl auch nie erfahren. Der am häufigsten genannte und wahrscheinlichste Wert ist 30 Fantastillionen Taler. Aber wie groß ist die Zahl Fantastillion?
Schüler und Schülerin sitzen an einem Tisch im Klassenzimmer, während ihnen die Lehrerin etwas erklärt
11. Februar, 2025
Die Auseinandersetzung mit politischer Neutralität in Schulen und die Verantwortung von Lehrkräften in gesellschaftlichen Krisensituationen sind von zentraler Bedeutung für die Weiterentwicklung und den Schutz einer demokratischen und menschenfreundlichen Gesellschaft. Der Beutelsbacher Konsens bietet seit Jahrzehnten Orientierung für die politische Bildung in der Schule, auch über den Politikunterricht hinaus. Er betont die Notwendigkeit, kontroverse Themen im Unterricht kontrovers zu behandeln, ohne die Schüler:innen dabei zu indoktrinieren.
Mädchen löst eine Matheaufgabe
22. Januar, 2025
Trotz vielfältiger Maßnahmen in den Bereichen Gendersensibilisierung, Geschlechtergerechtigkeit und Chancengleichheit sind Frauen in Deutschland in MINT-Berufen im Schnitt immer noch unterrepräsentiert. Zwar gibt es mittlerweile Fachgebiete mit paritätischer Verteilung (etwa Biologie, Medizin), aber auch viele Fachgebiete mit weiterhin extrem niedrigen Frauenanteilen (beispielsweise Physik, Ingenieurswissenschaften). Das zeigt, wie wichtig es ist, eine gendersensible MINT-Bildung zu fördern, die Mädchen und junge Frauen gezielt ermutigt, sich in bisher männerdominierten Bereichen auszuprobieren und langfristig Fuß zu fassen.
Bild eines Schülers mit VR-Brille
16. Januar, 2025
Kann die Zukunft uns verzaubern? Oft blicken wir mit gemischten Gefühlen auf das, was vor uns liegt. Doch Trend- und Zukunftsforscher wie Matthias Horx ermutigen uns, die Möglichkeiten von morgen nicht nur als mitunter Angst einflößende Herausforderung, sondern auch als vielversprechende Chance zu sehen. Sein Buch Der Zauber der Zukunft lädt dazu ein, sich mit einem positiven Blick auf Veränderungen einzulassen – ein Gedanke, der gerade für Lehrkräfte spannend ist. Doch wie können wir diese Perspektive auch in die Klassenzimmer bringen?
Mit dem DESI-Instrument in Arizona wird gegenwärtig eine dreidimensionale Karte der Position und Bewegung vieler Millionen Galaxien erstellt
27. November, 2024
Der Erkenntnisfortschritt der modernen Kosmologie verlief in den letzten zwei, drei Jahrzehnten rasant. Und doch sind die Konsequenzen äußerst kurios. Noch tappt die Wissenschaft vom Universum buchstäblich im Dunkeln, denn der Hauptbestandteil des Alls ist rätselhaft.